Курсовые, дипломные и контрольные работы.
Готовые и на заказ

Математический анализ Практическая задача № 1 и № 2 – Решение

ДисциплинаМатематические
Тип работыКонтрольные
Количество страниц9
Год сдачи2017
Номер работы703

О работе

Вы можете приобрести задачи по отдельности, для этого обратитесь к нашему менеджеру. Работа сдана на «отлично», самостоятельное решение, грамотное оформление

Содержание

Дисциплина Математический анализ
Направление – Экономика
ПРАКТИЧЕСКАЯ ЗАДАЧА № 1
по освоению профессиональных компетенций ПК-1, ПК-2, ПК-6
Задание 1:
Функция издержек имеет вид C(x)=10+x^2/10 .
На начальном этапе фирма организует производство так, чтобы минимизировать средние издержки A(x). В дальнейшем на товар устанавливается цена, равная 4 усл. ед. за единицу. На сколько единиц товара фирме следует увеличить выпуск?
Решение

Задание 2.
Фирма минимизирует средние издержки, которые получаются в результате равными 30 руб./ед. Чему равны при этом предельные издержки?
Решение

Задание 3.
Считается, что увеличение реализации y от затрат на рекламу x (млн. руб.) определяется соотношением :y=0,1√x . Доход от реализации единицы продукции равен 20 тыс. руб. Найти уровень рекламных затрат, при котором фирма получит максимальную прибыль.
Решение

Задание 4.
Зависимость дохода монополии от количества выпускаемой продукции x определяется как D(x)=100x-1000√x (400≤x≤900). Функция издержек на этом промежутке имеет вид :C(x)=50x+4/(5 ) x√x . Найти оптимальное для монополии-производителя значение выпуска продукции.
Решение

ПРАКТИЧЕСКАЯ ЗАДАЧА № 2
по реализации профессиональной компетенции ПК-4,ПК-5,ПК-10,ПК-15.
Задание 1:
Изменение производительности производства с течением времени от начала внедрения нового технологического процесса задается функцией z=32-2^(-0,5t+5) ,где t – время в месяцах. Найти объем продукции, произведенной а) за первый месяц ; б) за третий месяц;
в) за шестой месяц; г) за последний месяц года, считая от начала внедрения рассматриваемого технологического процесса.
Решение

Задание 2.
Найти объем продукции, выпущенной предприятием за год (258 рабочих дней), если ежедневная производительность этого предприятия задана функцией
f(t)=-0,0033 t^(2 )-0,089 t+20,96 , где 1≤t≤8 -время в часах.
Решение

Задание 4.
Уравнение спроса на некоторый товар имеет вид p=134- x^(2 ).
Найти выигрыш потребителей, если равновесная цена равно 70.
Решение

Вы можете убедиться в качестве данной работы. Часть контрольной представлена ниже:

matematicheskij-analiz-prakticheskaya-zadacha--1-i--2--reshenie

290 р.
и получить 100 бонусных руб.
Только проверенные работы
Бонусы
при покупке
Работы по любому предмету на заказ
Способы оплаты: