Содержание
1. Даны координаты вершин треугольника ABC. Найти: 1) уравнение стороны АВ; 2) уравнение высоты CD, опущенной из вершины С на сторону АВ; 3) уравнение медианы АЕ; 4) уравнение окружности, для которой медиана АЕ служит диаметром
A(-2;0) B(1;12) С(7;4)
Решение
2. Решить систему уравнений с тремя неизвестными двумя способами:
1) при помощи определителей по формулам Крамера,
2) с помощью обратной матрицы
Решение
3. Решить систему уравнений методом Гаусса
Решение
4. Вычислить
где и – a, b, c векторы, координаты которых заданы в таблице:
Номер задачи |
Вектор a |
Вектор b |
Вектор c |
35 |
{0;-1;2} |
{3;-2;3} |
{4;2;-2} |
Решение
5.Даны координаты вершин пирамиды ABCD.
Найти:
1) длину ребра AB;
2) угол между ребрами AB и AD;
3) угол между ребром AD и гранью ABC;
4) площадь грани ABC;
5) объем пирамиды;
6) уравнения прямой AB;
7) уравнение плоскости ABC;
8) уравнения высоты, опущенной из вершины D на грань ABC.
Сделать чертеж
Номер задачи |
Координаты вершины A |
Координаты вершины B |
Координаты вершины C |
Координаты вершины D |
46 |
(1; 8; 2) |
(5; 2; 6) |
(5; 7; 4) |
(4; 10; 9) |
Решение
Вы можете убедиться в качестве данной работы. Часть контрольной представлена ниже: